Papers

Finding excesses in model parameter space

K Chathirathas, T Ferber, F Kahlhoefer… - arXiv preprint arXiv …, 2024 - arxiv.org
Neuroscience paper hep-ph Suggest

… , the optimal sensitivity to new physics may be obtained by directly analysing the low-level features of individual events using the methods of simulationbased inference (…

Link to paper

BibTeX

@article{2407.20329v1,
Author = {Kierthika Chathirathas and Torben Ferber and Felix Kahlhoefer and Alessandro Morandini},
Title = {Finding excesses in model parameter space},
Eprint = {2407.20329v1},
ArchivePrefix = {arXiv},
PrimaryClass = {hep-ph},
Abstract = {Simulation-based inference (SBI) makes it possible to infer the parameters of
a model from high-dimensional low-level features of the observed events. In
this work we show how this method can be used to establish the presence of a
weak signal on top of an unknown background, to discard background events and
to determine the signal properties. The key idea is to use SBI methods to
identify events that are similar to each other in the sense that they agree on
the inferred model parameters. We illustrate this method for the case of
axion-like particles decaying to photons at beam-dump experiments. For poor
detector resolution the diphoton mass cannot be reliably reconstructed, so
there is no simple high-level observable that can be used to perform a bump
hunt. Since the SBI methods do not require explicit high-level observables,
they offer a promising alternative to increase the sensitivity to new physics.},
Year = {2024},
Month = {Jul},
Url = {http://arxiv.org/abs/2407.20329v1},
File = {2407.20329v1.pdf}
}

Share